Author Affiliations
Abstract
1 Department of Electrical, Computer & Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
2 e-mail: Mingming.Nie@colorado.edu
3 e-mail: ShuWei.Huang@colorado.edu
We present the first design and analysis of a solid-state Mamyshev oscillator. We utilize the phase-mismatched cascaded quadratic nonlinear process in a periodically poled lithium niobate waveguide to generate substantial spectral broadening for Mamyshev mode locking. The extensive spectral broadening bridges the two narrowband gain media in the two arms of the same cavity, leading to a broadband mode locking not attainable with either gain medium alone. Two pulses are coupled out of the cavity, and each of the output pulses carries a pulse energy of 25.3 nJ at a repetition rate of 100 MHz. The 10 dB bandwidth of 2.1 THz supports a transform-limited pulse duration of 322 fs, more than 5 times shorter than what can be achieved with either gain medium alone. Finally, effects of group velocity mismatch, group velocity dispersion, and nonlinear saturation on the performance of Mamyshev mode locking are numerically discussed in detail.
Photonics Research
2019, 7(10): 10001175
Author Affiliations
Abstract
State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
A high pulse repetition frequency (PRF), high energy Ho:YAG laser directly pumped by a Tm-doped fiber laser and its application to a mid-infrared ZnGeP2 (ZGP) optical parametric oscillator (OPO) is demonstrated. The maximum polarized 2.09 μm laser pulse energy is 13.46 mJ at a PRF of 1 kHz. The corresponding peak power reaches 504 kW. In a double-resonant ZGP-OPO, a maximum mid-infrared laser pulse energy of 1.25 mJ, corresponding to a peak power of 79 kW, is accomplished at a PRF of 3 kHz. The nonlinear conversion efficiency reaches 41.7%. The nonlinear slope efficiency reaches 53.3%.
140.3070 Infrared and far-infrared lasers 140.3540 Lasers, Q-switched 140.4480 Optical amplifiers 140.5680 Rare earth and transition metal solid-state lasers 
Chinese Optics Letters
2017, 15(9): 091402

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!